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Abstract Most attribution studies tend to focus on the impact of anthropogenic forcing on individual
variables. However, studies have already established that many climate variables are interrelated,

and therefore, multidimensional changes can occur in response to climate change. Here, we propose

a multivariate method which uses copula theory to account for underlying climate conditions while
attributing the impact of anthropogenic forcing on a given climate variable. This method can be applied
to any relevant pair of climate variables; here we apply the methodology to study high temperature
exceedances given specified precipitation conditions (e.g., hot droughts). With this method, we introduce
a new conditional probability ratio indicator, which communicates the impact of anthropogenic forcing
on the likelihood of conditional exceedances. Since changes in temperatures under droughts have already
accelerated faster than average climate conditions in many regions, quantifying anthropogenic impacts on
conditional climate behavior is important to better understand climate change.

Plain Language Summary Most studies investigating human impacts on climate conditions
focus on characterizing changes in individual variables such as precipitation or temperature. However,
since many climate conditions are interconnected, these individual variables do not comprehensively
represent the many changes that can occur in response to human activity. Here, we introduce a method
that takes into account underlying climate conditions while quantifying the impact of human activity on a
given climate variable. This method can be used to study pairs of climate variables and here we provide an
example application to examine high temperature occurrences during dry precipitation conditions using
climate models. For example, we show that regions such as the Amazon have a 4.1 times higher likelihood
of experiencing high temperatures under dry climate conditions as a result of human activity. Given our
knowledge of future climate change, we anticipate that the relationships between key climate variables
may continue to change, which makes the study of human impacts on conditional climate behavior
important for a more complete understanding of climate change.

1. Introduction

The detection and attribution of changes in climate to anthropogenic activities serves to deepen our un-
derstanding of how humans have externally forced climate change (IPCC, 2013). Detection and attribution
studies present evidence of the physical consequences of the presence of anthropogenic forcings, allowing
for the characterization and quantification of the many impacts of climate change (Easterling et al., 2016).
In recent decades, the field of detection and attribution has begun to investigate changes in individual cli-
mate extremes, such as high temperature and heavy precipitation events (Christidis et al., 2005; Easterling
et al., 2016; Fischer & Knutti, 2014, 2015; Meehl et al., 2007; Min et al., 2011, 2013). However, due to the
interconnected and interactive nature of our climate system, the occurrence of one climate hazard can
influence and even trigger the occurrence of associated climate hazards (AghaKouchak et al., 2020). There-
fore, traditional studies quantifying the influence of anthropogenic activities on singular (or univariate)
climate variables may not capture the full scope of resulting environmental and socioeconomic impacts
(AghaKouchak et al., 2020; Leonard et al., 2014; Zscheischler et al., 2018).
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Detection and attribution studies have only recently begun to make progress in evaluating anthropogenic
impacts from multivariate perspectives. In 2018, Sarhadi et al. used Coupled Model Intercomparison Pro-
ject Phase 5 (CMIP5) historical and historical natural-only data to establish that the presence of anthropo-
genic forcing has significantly impacted the joint probability of concurrent warm and dry years (Sarhadi
et al., 2018). Mazdiyasni et al. (2019) recently introduced and applied a novel framework for representing
heat wave events, simultaneously incorporating multiple, interdependent features in intensity-duration-fre-
quency curves to highlight the impact of anthropogenic forcing on heat waves. Wang et al. (2020) also
attributed increases in the frequency and intensity of summertime compound daytime and nighttime hot
extremes to rising anthropogenic emissions. As relatively few attribution studies have examined the impacts
of anthropogenic forcing using multivariate approaches, dependencies between interrelated climate varia-
bles are still not well-studied or well-represented in detection and attribution literature.

Of the many pairs of key climate variables, temperature and precipitation possess a strong negative cor-
relation over much of the global land area during the warm season, which has been widely recognized
in the literature (Chang & Wallace, 1987; Huang & van den Dool, 1993; Madden & Williams, 1978; Tren-
berth & Shea, 2005). In addition, recent studies have highlighted that the dependence between temperature
and precipitation may be changing due to increasing temperatures (Cheng et al., 2019; Hao et al., 2019;
Zscheischler & Seneviratne, 2017). With CMIP5 projections, Zscheischler and Seneviratne (2017) found
that changes in the negative correlation between summertime temperature and precipitation will result
in significant increases in concurrently dry and hot summers. Therefore, the attribution of changes in the
dependence between temperature and precipitation can provide important insight into the contribution of
anthropogenic forcing on fundamental changes in our climate system.

In addition to changes in the dependence of temperature and precipitation, recent studies have also found
conditional temperature changes occurring under low precipitation conditions. In the United States, Chiang
et al. (2018) used observations to show that drought temperatures have experienced amplified warming
relative to average temperatures in southern and eastern regions between the early and late 20™ century.
The CMIP5 multi-model ensemble average also reflected this pattern of amplified warming under dry con-
ditions in the southern states, indicating that this amplified warming pattern was expressed in both obser-
vations and model simulations. With a conditional perspective of temperature change, Chiang et al. (2018)
identified regions that are more vulnerable to amplified warming under dry conditions, which differed
from regions experiencing the greatest change in average temperatures. This highlights the importance of
considering underlying conditions when evaluating emerging changes in climate variables, as conditional
analyses can provide different perspectives of changes in climate conditions and climate risks.

Here, we introduce a new approach to attributing climate extremes to anthropogenic forcing by investigating
conditional temperature exceedances with the use of copula theory. Copulas are multivariate distribution
functions which are useful in modeling the dependence structure between two or more random variables
(Madadgar & Moradkhani, 2013; Mazdiyasni et al., 2017; Nelsen, 2006; Zscheischler & Seneviratne, 2017).
The use of copulas allows us to better understand the conditional behavior of a given variable, which other-
wise may be difficult to study due to the inherent rarity of samples. Using CMIP5 climate models with and
without anthropogenic forcing, we examine how the presence of anthropogenic forcing impacts the likeli-
hood of temperature exceedances conditioned on preceding dry meteorological conditions. Anthropogenic
forcing refers to the human-driven or anthropogenic impact on Earth's radiative forcing, and includes the
emission of heat-trapping greenhouse gases, the industrial release of aerosols, and land use and land cover
changes (IPCC, 2013). With a conditional perspective of anthropogenic impacts on our climate, we can gain
a better understanding of the changing risks of extremes, which will serve to strengthen future vulnerability
and exposure studies. In addition, with this novel approach to evaluating anthropogenic impacts, we can
improve our understanding of how extremes have changed and may continue to change in the future.

2. Materials and Methods
2.1. Data

To conduct the study, we used monthly precipitation and temperature from 15 CMIP5 historical and his-
torical natural-only models (see Appendix A for the included models) during the period 1850-2005 (Taylor
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et al., 2012). The CMIP5 historical models simulate the recent historical past by including anthropogen-
ic (greenhouse gas emissions, anthropogenic aerosol emissions, human-driven land use and land cover
change) and natural forcings (solar forcings, volcanic aerosols), while the historical natural-only models
only include natural forcings using fixed pre-industrial greenhouse gas and aerosol concentrations (without
anthropogenic forcing) (Taylor et al., 2012). We regridded all models to a 1 degree resolution using near-
est-neighbor interpolation to examine the multi-model ensemble results.

For our analysis, we used the land regions outlined in the fifth Intergovernmental Panel on Climate
Change (IPCC) report (referred to as IPCC regions in the text) to examine conditional differences be-
tween historical and historical natural-only conditions across regions (IPCC, 2013). For each climate
model, we standardized each IPCC region's median precipitation and temperature time series with
each region's historical natural-only 1850-2005 data. We followed the non-parametric standardization
methodology introduced in Farahmand and AghaKouchak (2015) to generate each region's 3-month
standardized precipitation index (SPI) and standardized temperature conditions on the last month of
the SPI time window (Farahmand & AghaKouchak, 2015). Our standardization approach allowed us
to uniformly examine a range of dry and warm conditions across different regions and varying climate
scenarios. Then, we subsampled the 3-month SPI and monthly standardized temperature values at the
end of each season (February, May, August, and November) to create each regional time series used for
the analysis outlined in the following section. Due to the autocorrelated nature of our climate variables,
we subsampled from our standardized indices in order to reduce the temporal dependence between
time points.

2.2. Analysis

Recently, copulas have become a popular tool to represent multivariate relationships in climate science
(Hao & Singh, 2016; Salvadori et al., 2007). Copulas are multivariate distribution functions, which can
model the dependence structure of two or more variables and aid in evaluating compound extremes, that
by definition, occur infrequently (Joe, 1997; Nelsen, 2006; Zscheischler & Seneviratne, 2017). Copula
theory allows us to examine features such as the joint and conditional behavior of extreme values, which
otherwise may be difficult to study (Nelsen, 2006). Copulas are advantageous over other multivariate
approaches as the marginal distributions of the individual variables and dependence structure of the
variables are evaluated separately, which allows for the flexible application of copula theory to variables
with different margins (Grimaldi & Serinaldi, 2006). Due to the interconnected, non-linear nature of
our climate system, copulas are a versatile and accessible tool that can be used to describe multivariate
climate variables.

Using copula theory, we can express the joint probability distribution of precipitation (X) and temperature

),

F(xy) =¢[ e (x)- 5 (v)]

where F(x,y) represents the cumulative joint probability of precipitation and temperature, c is the copula
cumulative distribution function, and Fx(x) and Fy(y) represent the marginal probability distribution func-
tions (PDF) of precipitation and temperature, respectively (Sklar, 1959).

For each region, we took the multi-model median subsampled time series and transformed the negative
standardized precipitation and standardized temperature data into their uniform marginals, and then iso-
lated the copula family that best represents the bivariate data. To transform the bivariate data into their
uniform marginals, we employed this transformation for each pair of datapoints (xl-,y,. ):

1 1
n—R(x,-)+5 n—R(y,-)+E

s

n n

where i represents the pair number, #, the total number of pairs, and R(x,.), the rank of x;.
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We determined the best-fit copula family by using the BiCopSelect function in the R package, Vine-
Copula, employing the Bayesian Information Criteria to select the family (Nagler et al., 2019). We
then confirmed the goodness of fit of the best-fit copula family with VineCopula's BiCopGofTest
function-which implements a goodness-of-fit test using White's information matrix equality (Nagler
et al., 2019).

To highlight the difference between each region’s best-fit historical and historical natural-only best-fit copu-
la families and parameters, we constructed two-dimensional kernel density estimates using randomly gen-
erated variates from the copula models. We then transformed the variates from uniform marginals back
to the negative standardized precipitation and standardized temperature values to visualize historical and
historical natural-only variates on the same axes.

Using our fitted copula models, we selected the 10th percentile of precipitation from the historical nat-
ural-only scenario and sampled the conditional historical and historical natural-only probability density
functions (PDFs) of monthly temperature. From the conditional temperature PDFs, we extracted the proba-
bility of temperature exceedances conditioned on the 10th percentile of precipitation. Using the probability
ratio concept, we examined a set absolute temperature anomaly (e.g., the 90th percentile of temperature
from the historical natural-only scenario) and then found the probability of exceedance for the defined
precipitation condition. Finally, for each region, we compared historical and historical natural-only condi-
tional temperature exceedance probabilities to create a “conditional probability ratio,” which we abbreviate
as CPR, to quantify the difference between the two climate scenarios. Although we chose to use the 10th
percentile of precipitation and the 90th percentile of temperature, which are common thresholds used to
define climate indices to express dry and hot conditions, any pair of percentiles (and any pair of variables)
can be used with this methodology.

3. Results

Figure 1 depicts selected IPCC regional copula contours as modeled by their best-fit copula families (the
best-fit copula families and associated p-values for each IPCC region and climate scenario can be found in
Tables S1 and S2, respectively). Here, we have chosen to highlight results from a range of regions across
the globe: the Amazon (AMZ), Central Europe (CEU), Central North America (CNA), and South Australia/
New Zealand (SAU) (the remaining regions are shown in Figure S1). Each subplot depicts the historical and
historical natural-only dependencies between temperature and negative standardized precipitation for the
selected region. From these regional plots, we can highlight the impact of anthropogenic forcing on the de-
pendence between temperature and negative precipitation for a given region. The Amazon and South Aus-
tralia/New Zealand regions show strong shifts in the medians and tails of their distributions, while Central
Europe and Central North America show less substantial change in their distribution medians. However,
we note that the right tail of the historical Central North America distribution differs substantially from the
historical natural-only distribution.

We also note that regions with more significant shifts in their medians do not just shift positions and main-
tain the same dependence shape, but also experience changes in the structure of the dependence between
negative precipitation and temperature. For example, for the Amazon region, between historical and histor-
ical natural-only conditions, we highlight that there is significant change occurring in the range of monthly
temperature, with very substantial change occurring in the upper tail, and little to no change occurring in
the range of monthly precipitation. This translates to very substantial changes in the general dependence
structure between temperature and precipitation, since the two variables exhibit different responses to the
presence of anthropogenic forcing.

Using the best-fit copula families, we constructed conditional temperature probability density functions
(PDFs) by sampling from each region’s historical natural-only 90th percentile of negative standardized
precipitation, which is approximate to the lower limit of the United States Drought Monitor “moderate
drought” category. Figure 2 displays the historical and historical natural-only conditional temperature PDFs
for the same regions shown in Figure 1-the Amazon, Central Europe, Central North America, and South
Australia/New Zealand (see Figure S2 for the remaining regions). These subplots allow us to directly com-
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Figure 1. Historical and historical natural-only 50th and 90th percentile contours constructed from best-fit copula
families. Each subplot depicts the dependence between negative standardized precipitation and standardized
temperature for a given Intergovernmental Panel on Climate Change region. Each subplot contains a dashed line
denoting the 90th percentile of negative standardized precipitation from each region’s historical natural-only seasonal
data. The regions presented are: the Amazon (AMZ), Central Europe (CEU), Central North America (CNA), and South
Australia/New Zealand (SAU).

pare differences in the conditional distributions of temperature and quantify the probability of exceeding a
specified temperature percentile, which expresses the impact of anthropogenic forcing on high temperature
exceedances while accounting for the underlying moisture condition. For the Amazon and South Austral-
ia/New Zealand regions, we see very large divergences between the historical and historical natural-only
conditional temperature distributions as well as large differences between the temperature exceedances for
the two scenarios (historical exceedances are 4.1 and 2.9 times larger than historical natural-only exceed-
ances, respectively). These results correspond well with the copula contours presented for the two regions
in Figure 1. In Central Europe and Central North America, the conditional temperature distributions are
more similar between the two climate scenarios, which also correspond well with the regional results from
Figure 1. However, when comparing the probability of exceedance for Central North America relative to
Central Europe, we see that Central North America experiences a relatively larger divergence which is sup-
ported by differences in the tails of the dependencies.

Therefore, in general, regions with conditional PDFs which have experienced large changes in location
and shape are associated with substantial differences in exceedance probabilities. However, regions with
little to no change in the general location or shape of the conditional PDF can still experience large
changes at the tail. Overall, we are able to visualize and quantify the impact of anthropogenic forcing on
conditional temperature behavior at specified precipitation percentiles using the methodology presented
here.

As mentioned earlier, from our conditional temperature PDFs, we are able to compare the historical and
historical natural-only likelihood of exceeding a defined temperature threshold under the historical natu-
ral-only 90th percentile of negative precipitation for each region. Using the ratio of historical to historical
natural-only exceedance probabilities for each region, we can derive conditional probability ratios (CPR)

CHIANG ET AL.

50f9



Aru | )
NI Geophysical Research Letters 10.1029/2021GL094361

ADVANCING EARTH
AND SPACE SCIENCE

AMZ CEU
1.0
0.5
54.0%
13.29
0.0 B.2¢0
P CNA SAU
‘®
c
)]
(@]
1.0
0.5
0.0
-2 -1 0 1 2 3 -2 -1 0 1 2 3

Monthly Temperature Anomaly
Scenario — Hist — HistNat

Figure 2. Historical and historical natural-only conditional temperature probability density functions (PDFs). Each
subplot shows the historical and historical natural-only conditional temperature PDFs from the historical natural-only
90th percentile of negative precipitation. The area under each distribution exceeding the historical natural-only 90th
percentile of temperature is highlighted in the appropriate color. The regions shown are: the Amazon (AMZ), Central
Europe (CEU), Central North America (CNA), and South Australia/New Zealand (SAU).

for monthly temperatures exceeding the historical natural-only 90th percentile of temperature (Figure 3).
Figure 3 shows that all regions falling between 60°N and 60°S possess CPR scores higher than a value of 1,
which indicates that these regions have a higher conditional likelihood of experiencing a high temperature
exceedance under the historical scenario relative to the historical natural-only scenario. Essentially, these
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Figure 3. Copula-derived conditional probability ratios (CPR). CPR mapped atop each IPCC region. For all subplots,
CPR > 1 represents a higher likelihood of exceeding the defined high temperature threshold in the historical scenario
and CPR < 1 represents a higher likelihood of exceeding the defined threshold in the historical natural-only scenario.
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scores communicate that anthropogenic climate change has made conditional high temperature events
substantially more likely across the globe.

In addition, CPR scores are also useful in that they can capture large changes in the tail of the distribution,
and this methodology allows us to visualize where anthropogenic forcing is impacting extreme event be-
havior the most. We highlight that regions located in the tropical latitude bands possess higher CPR scores
relative to regions located in extratropical bands. These results indicate that anthropogenic forcing has im-
pacted the occurrence of conditional high temperature exceedances in the tropics at a much greater level
relative to extratropical regions. This spatial pattern resembles the results from Fischer and Knutti (2015),
which investigated the impact of anthropogenic forcing on univariate high temperature exceedances. How-
ever, with our CPR scores, we are able to show distinct regional differences not seen when examining uni-
variate temperature extremes. For example, West Africa possesses a much greater CPR score relative to
East Africa, which is not conveyed under the previously referenced univariate probability ratio evaluation.
Overall, we can see the global impact of anthropogenic emissions on the likelihood of conditional high tem-
perature exceedances, which has already translated into higher concurrences of droughts and heat waves
(AghaKouchak et al., 2014; Mazdiyasni & AghaKouchak, 2015).

4. Conclusions

In this study, we have introduced a conditional framework which allows us to account for underlying pre-
cipitation conditions when assessing the impact of climate change on temperature extremes. Through our
framework, we have directly compared how conditional temperature distributions have diverged under
historical and historical natural-only conditions and shown how different regions across the globe have re-
sponded to the presence of anthropogenic forcing. With our results, we have shown that regions such as the
Amazon and South Australia/New Zealand have a 4.1 and 2.9 times higher likelihood of exceeding a high
temperature threshold under dry conditions in the historical relative to the historical natural-only climate
scenario. In a global analysis, we also demonstrated that conditional high temperature exceedances in trop-
ical regions experienced the greatest change in likelihood due to anthropogenic forcing. We also highlight
that with our introduced metric, we are able to see differences between historical and historical natural-on-
ly conditions that are not shown when only examining univariate extremes. As we have seen previously,
average temperatures under drought conditions are accelerating in many regions in the United States, and
if we do not account for conditional risks, we may misrepresent how often temperature and related concur-
rent extremes occur. By understanding how preceding precipitation conditions may inform the risk of high
temperature extremes, we can also be better prepared for future extreme events.

Here, the methodology introduced can be easily applied to different spatial resolutions and regions across
the globe and is complementary to existing univariate attribution indices. In addition, this framework pro-
vides a non-linear representation of changes in temperature distributions based on different underlying
moisture conditions. Our findings are also relevant in other fields of study that are impacted by climate
conditions. Climate-sensitive sectors (such as agriculture and energy production) have and will continue
to experience strong ramifications from the increased likelihood of high temperature exceedances due to
anthropogenic forcing, and thus will benefit from acknowledging the impact of climate change on condi-
tional temperature extremes. The copula-derived conditional probability ratio index introduced here also
provides a novel view of the impacts of anthropogenic forcing on climate extremes given specified climate
conditions. With current climate change projections, we expect that the relationships between key climate
variables will continue to evolve, which makes the study of the impacts of anthropogenic forcing on condi-
tional behavior crucial for a more comprehensive view on climate change impacts.
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Appendix A
Modeling center Institute ID Model name Latitude Longitude
Commonwealth Scientific and Industrial Research Organization (CSIRO) CSIRO-BOM ACCESS1.3 1.25 1.875
and Bureau of Meteorology (BOM), Australia
Beijing Normal University (BNU) BNU BNU-ESM 2.7906 2.8125
Canadian Centre for Climate Modeling and Analysis CCCMA CanESM2 2.7906 2.8125
National Center for Atmospheric Research NCAR CCSM4 0.9424 1.25
Centre National de Recherches Météorologiques/Centre Européen de CNRM-CERFACS CNRM-CM5 1.4008 1.40625
Recherche et Formation Avancée en Calcul Scientifique
Commonwealth Scientific and Industrial Research Organization in CSIRO-QCCCE CSIRO-Mk3-6-0 1.8653 1.875
collaboration with Queensland Climate Change Centre of Excellence
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciencesand  LASG-CESS FGOALS-g2 2.7906 2.8125
CESS, Tsinghua University
NASA Goddard Institute for Space Studies NASA GISS GISS-E2-H GISS-E2-R 2 2.5
Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR 1.8947 1.2676 3.752.5
IPSL-CM5A-MR
Japan Agency for Marine-Earth Science and Technology, Atmosphere MIROC MIROC-ESM 2.7906 2.8125
and Ocean Research Institute (The University of Tokyo), and National MIROC-ESM-CHEM
Institute for Environmental Studies
Meteorological Research Institute MRI MRI-CGCM3 1.12148 1.125
Norwegian Climate Centre NCC NorESM1-M 1.8947 2.5
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